Self-Organized Stigmergic Document Maps: Environment as a Mechanism for Context Learning
نویسندگان
چکیده
Social insect societies and more specifically ant colonies, are distributed systems that, in spite of the simplicity of their individuals, present a highly structured social organization. As a result of this organization, ant colonies can accomplish complex tasks that in some cases exceed the individual capabilities of a single ant. The study of ant colonies behavior and of their self-organizing capabilities is of interest to knowledge retrieval/ management and decision support systems sciences, because it provides models of distributed adaptive organization which are useful to solve difficult optimization, classification, and distributed control problems, among others. In the present work we overview some models derived from the observation of real ants, emphasizing the role played by stigmergy as distributed communication paradigm, and we present a novel strategy to tackle unsupervised clustering as well as data retrieval problems. The present ant clustering system (ACLUSTER) avoids not only short-term memory based strategies, as well as the use of several artificial ant types (using different speeds), present in some recent approaches. Moreover and according to our knowledge, this is also the first application of ant systems into textual document clustering. Keywords— Ant Systems, Unsupervised Clustering, Data Retrieval, Data Mining, Distributed Computing, Document Maps, Textual Document Clustering. I. STIGMERGY: FROM LOCAL PERCEPTIONS TO GLOBAL
منابع مشابه
Learning Document Image Features With SqueezeNet Convolutional Neural Network
The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...
متن کاملEvolving a Stigmergic Self-Organized Data-Mining
Self-organizing complex systems typically are comprised of a large number of frequently similar components or events. Through their process, a pattern at the global-level of a system emerges solely from numerous interactions among the lower-level components of the system. Moreover, the rules specifying interactions among the system’s components are executed using only local information, without...
متن کاملEvaluation of Linguistic Features for Word Sense Disambiguation with Self-Organized Document Maps
Word sense disambiguation automatically determines the appropriate senses of a word in context. We have previously shown that self-organized document maps have properties similar to a large-scale semantic structure that is useful for word sense disambiguation. This work evaluates the impact of different linguistic features on self-organized document maps for word sense disambiguation. The featu...
متن کاملWhen Ants Attack: Security Issues for Stigmergic Systems
Stigmergic systems solve global problems by using indirect communication mediated by an environment. Because they are localized and dynamic, stigmergic systems are self-organizing, robust and adaptive. These properties are useful for creating survivable systems, but stigmergic systems also raise new security concerns. Indirect communication makes systems more vulnerable in an open and hostile e...
متن کاملLearning Sensitive Stigmergic Agents for Solving Complex Problems
Systems composed of several interacting autonomous agents have a huge potential to efficiently address complex real-world problems. Usually agents communicate by directly exchanging information and knowledge about the environment. The aim of the paper is to develop a new computational model that endows agents with a supplementary interaction/search mechanism of stigmergic nature. Multi-agent sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/cs/0412075 شماره
صفحات -
تاریخ انتشار 2001